A new approach to solvability of some elliptic pde’s with square integrable boundary data
نویسنده
چکیده
I shall survey some recent results of Auscher, Axelsson and myself, concerning second order elliptic divergence form equations with complex measurable coefficients A that are independent of the transversal coordinate. In particular, we prove that the set of A ∈ L∞(Rn;Cn+1) for which boundary value problems with L2 Dirichlet or Neumann data are well posed, is an open set. This work is based on results of Axelsson, Keith and myself concerning perturbed Dirac operators, which in turn builds on the solution to the Kato square root problem by Auscher, Hofmann, Lacey, Tchamitchian and myself. Recent papers on this topic, also using techniques from harmonic analysis which were developed to solve the Kato square root problem, are by Alfonseca, Auscher, Axelsson, Hofmann and Kim, and by Auscher, Axelsson and Hofmann.
منابع مشابه
Solvability of Elliptic Systems with Square Integrable Boundary Data
We consider second order elliptic divergence form systems with complex measurable coefficients A that are independent of the transversal coordinate, and prove that the set of A for which the boundary value problem with L2 Dirichlet or Neumann data is well posed, is an open set. Furthermore we prove that these boundary value problems are well posed when A is either Hermitean, block or constant. ...
متن کاملThe Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملBoundary value problems for elliptic operators with singular drift terms
Let Ω be a Lipschitz domain in R, n ≥ 3, and L = divA∇ − B∇ be a second order elliptic operator in divergence form with real coefficients such that A is a bounded elliptic matrix and the vector field B ∈ Lloc(Ω) is divergence free and satisfies the growth condition dist(X, ∂Ω)|B(X)| ≤ ε1 for ε1 small in a neighbourhood of ∂Ω. For these elliptic operators we will study on the basis of the theory...
متن کاملBilinear Stochastic Elliptic Equations
We study stochastic elliptic PDEs driven by multiplicative Gaussian white noise. Even the simplest equations driven by this noise often do not have a square-integrable solution and must be solved in special weighted spaces. We demonstrate that the Cameron-Martin version of the Wiener chaos decomposition is an e ective tool to study such equations and present the corresponding solvability results.
متن کاملThe Initial Dirichlet Boundary Value Problem for General Second Order Parabolic Systems in Nonsmooth Manifolds
In a series of recent papers [1], [2], [3], [4], [5] we have initiated the study of boundary value problems for (variable coefficients, second order, strongly) elliptic PDE’s in nonsmooth subdomains of Riemannian manifolds via integral equation methods. Here we take the first steps in the direction of extending this theory to initial boundary value problems (IBV P ’s) for variable coefficient (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008